Does the Users' Tendency to Seek Information Affect Recommender Systems' Performance?

نویسندگان

  • Umberto Panniello
  • Lorenzo Ardito
  • Antonio Messeni Petruzzelli
چکیده

Much work has been done on developing recommender system (RS) algorithms, on comparing them using business metrics (such as customers’ trust or perception of recommendations’ novelty) and on exploring users’ reactions to recommendations. It was demonstrated that different recommender systems perform differently on several performance metrics and that different users react differently to the same kind of recommendations. As a consequence, some scholars challenged to explore how users with different tendency to seek information during their purchasing process may react to different kind of recommendations. To the best of our knowledge, none of the prior works studied if users’ tendency to seek information has an effect on recommender systems’ performance. Different users may traditionally have different propensity to seek information and to receive suggestions and therefore they may react differently to the same recommendations. To this aim, we performed a live experiment with real customers coming from a European firm.

منابع مشابه

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • J. UCS

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017